Search results

Search for "heavy ions" in Full Text gives 19 result(s) in Beilstein Journal of Nanotechnology.

Ion beam processing of DNA origami nanostructures

  • Leo Sala,
  • Agnes Zerolová,
  • Violaine Vizcaino,
  • Alain Mery,
  • Alicja Domaracka,
  • Hermann Rothard,
  • Philippe Boduch,
  • Dominik Pinkas and
  • Jaroslav Kocišek

Beilstein J. Nanotechnol. 2024, 15, 207–214, doi:10.3762/bjnano.15.20

Graphical Abstract
  • unperturbed. Present stability and nature of damages on DNA origami nanostructures enable fusion of DNA origami advantages such as shape and positioning control into novel ion beam nanofabrication approaches. Keywords: DNA nanotechnology; DNA origami; FIB; heavy ions; Introduction Ion beam interaction with
  • present an opportunity for their use in combination with ion beam processing. In the present work, we focus on the stability of DNA origami nanostructures deposited on the surface upon irradiation with heavy ions at different interaction regimes that model the most common types of ion processing
  • utilizing heavy ions. However, as previously pointed out, the folded configuration of DNA origami nanostructures offers additional stability against lower-LET ionizing radiation. Could the folded structure of the DNA origami also deal with initial damage around the ion track and conserve its structure in
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2024

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
  • confirmed the catalytic activity of the product. Adsorption of heavy ions from water samples was investigated to find the activity on the surface of the product, and it was found that the mentioned CDs can remove Cd2+ ions by 37% and Pb2+ ion by 75% from the water sample [111]. Watermelon juice-based N-CDs
PDF
Album
Review
Published 05 Oct 2022

Out-of-plane surface patterning by subsurface processing of polymer substrates with focused ion beams

  • Serguei Chiriaev,
  • Luciana Tavares,
  • Vadzim Adashkevich,
  • Arkadiusz J. Goszczak and
  • Horst-Günter Rubahn

Beilstein J. Nanotechnol. 2020, 11, 1693–1703, doi:10.3762/bjnano.11.151

Graphical Abstract
  • milling with heavy ions [38][39]. This is due to the fact that the energy loss of He+ ions in the patterning approach is spread over larger stopping distances than that in the case of milling with heavy ions. One of the major advantages of FIB milling with heavy ions, which is often cited in the
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2020

Charged particle single nanometre manufacturing

  • Philip D. Prewett,
  • Cornelis W. Hagen,
  • Claudia Lenk,
  • Steve Lenk,
  • Marcus Kaestner,
  • Tzvetan Ivanov,
  • Ahmad Ahmad,
  • Ivo W. Rangelow,
  • Xiaoqing Shi,
  • Stuart A. Boden,
  • Alex P. G. Robinson,
  • Dongxu Yang,
  • Sangeetha Hari,
  • Marijke Scotuzzi and
  • Ejaz Huq

Beilstein J. Nanotechnol. 2018, 9, 2855–2882, doi:10.3762/bjnano.9.266

Graphical Abstract
  • particle beams and the resolution obtained is set by the scattering of the beam in the resist layer and the underlying substrate. Scattering and range depend upon a combination of electron scattering and nuclear scattering. The latter is of particular importance for heavy ions like Ga+ and causes damage to
PDF
Album
Review
Published 14 Nov 2018

ZnO-nanostructure-based electrochemical sensor: Effect of nanostructure morphology on the sensing of heavy metal ions

  • Marina Krasovska,
  • Vjaceslavs Gerbreders,
  • Irena Mihailova,
  • Andrejs Ogurcovs,
  • Eriks Sledevskis,
  • Andrejs Gerbreders and
  • Pavels Sarajevs

Beilstein J. Nanotechnol. 2018, 9, 2421–2431, doi:10.3762/bjnano.9.227

Graphical Abstract
  • the presence of lead and other heavy ions, even in small quantities, is an important and topical task. ZnO nanostructures are promising candidates for use in such sensors. They are sensitive to various types of contamination, including almost all heavy metal ions and organic pollutants, and show very
PDF
Album
Full Research Paper
Published 11 Sep 2018

Magnetism and magnetoresistance of single Ni–Cu alloy nanowires

  • Andreea Costas,
  • Camelia Florica,
  • Elena Matei,
  • Maria Eugenia Toimil-Molares,
  • Ionel Stavarache,
  • Andrei Kuncser,
  • Victor Kuncser and
  • Ionut Enculescu

Beilstein J. Nanotechnol. 2018, 9, 2345–2355, doi:10.3762/bjnano.9.219

Graphical Abstract
  • electrochemical replication, using as templates chemically etched polycarbonate membranes irradiated with swift heavy ions. Individual Ni–Cu alloy nanowires of different compositions have been contacted on interdigitated metallic electrodes by using electron beam lithography (EBL) and magnetoresistive
PDF
Album
Supp Info
Full Research Paper
Published 30 Aug 2018

Defect formation in multiwalled carbon nanotubes under low-energy He and Ne ion irradiation

  • Santhana Eswara,
  • Jean-Nicolas Audinot,
  • Brahime El Adib,
  • Maël Guennou,
  • Tom Wirtz and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2018, 9, 1951–1963, doi:10.3762/bjnano.9.186

Graphical Abstract
  • appearance of magnetism was reported for graphite after proton irradiation [18] and of fullerenes after the irradiation with heavy ions [19]. For the development of novel technological applications, being able to modify the structure of CNTs alone is not sufficient. It is also important to relate the
PDF
Album
Supp Info
Full Research Paper
Published 09 Jul 2018

Heavy-metal detectors based on modified ferrite nanoparticles

  • Urszula Klekotka,
  • Ewelina Wińska,
  • Elżbieta Zambrzycka-Szelewa,
  • Dariusz Satuła and
  • Beata Kalska-Szostko

Beilstein J. Nanotechnol. 2018, 9, 762–770, doi:10.3762/bjnano.9.69

Graphical Abstract
  • , for example such as linker concentration, heavy ions concentration, pH value, or inorganic core composition, and such studies are in progress and will be a subject of subsequent papers. Conclusion Ferrite nanoparticles doped with calcium, cobalt, nickel, or manganese show differences in ion adsorption
PDF
Album
Full Research Paper
Published 28 Feb 2018

Electron interaction with copper(II) carboxylate compounds

  • Michal Lacko,
  • Peter Papp,
  • Iwona B. Szymańska,
  • Edward Szłyk and
  • Štefan Matejčík

Beilstein J. Nanotechnol. 2018, 9, 384–398, doi:10.3762/bjnano.9.38

Graphical Abstract
  • maximum of the peak Δm) through changing the software parameter, which defines the resolution of the ion peak in the mass spectrum (see, for instance, Figure 2). Heavy ions can thus be detected. However, the position of the peak is then not measured precisely as the signal is broadened over several masses
PDF
Album
Full Research Paper
Published 01 Feb 2018

Conformal SiO2 coating of sub-100 nm diameter channels of polycarbonate etched ion-track channels by atomic layer deposition

  • Nicolas Sobel,
  • Christian Hess,
  • Manuela Lukas,
  • Anne Spende,
  • Bernd Stühn,
  • M. E. Toimil-Molares and
  • Christina Trautmann

Beilstein J. Nanotechnol. 2015, 6, 472–479, doi:10.3762/bjnano.6.48

Graphical Abstract
  • include (a) irradiation of polymer foils with a well-defined number of approx. 2 GeV heavy ions, (b) chemical etching that converts each individual ion track into a cylindrical channel; the etching time determines the channel diameter (120 s etching resulted in channels of about 50 nm in diameter), and (c
  • based on SiO2-surface modification. Schematics of the fabrication of SiO2 coated membranes: (a) irradiation of PC foil with GeV heavy ions, (b) chemical etching of ion tracks to form cylindrical nanochannels, (c) ALD conformal coating of porous membrane. Diffuse reflectance FTIR spectra of uncoated
PDF
Album
Full Research Paper
Published 16 Feb 2015

Electrical properties of single CdTe nanowires

  • Elena Matei,
  • Camelia Florica,
  • Andreea Costas,
  • María Eugenia Toimil-Molares and
  • Ionut Enculescu

Beilstein J. Nanotechnol. 2015, 6, 444–450, doi:10.3762/bjnano.6.45

Graphical Abstract
  • copolymer templates, while the filling methods range from electrochemical or electroless deposition, to atomic layer deposition or molten metal injection. The nanoporous polymer ion track membranes are obtained by polymer foil irradiation with swift heavy ions and further chemical etching of the ion tracks
  • swift heavy ions from the linear accelerator UNILAC at the Gesellschaft für Schwerionenforschung (GSI). The ions (Au, Pb or U) were accelerated at a specific kinetic energy of 11.4 MeV/nucleon. When passing through the polymer foil, each ion leaves a cylindrical defect track as a consequence of its
PDF
Album
Full Research Paper
Published 12 Feb 2015

Synthesis of Pt nanoparticles and their burrowing into Si due to synergistic effects of ion beam energy losses

  • Pravin Kumar,
  • Udai Bhan Singh,
  • Kedar Mal,
  • Sunil Ojha,
  • Indra Sulania,
  • Dinakar Kanjilal,
  • Dinesh Singh and
  • Vidya Nand Singh

Beilstein J. Nanotechnol. 2014, 5, 1864–1872, doi:10.3762/bjnano.5.197

Graphical Abstract
  • . Results and Discussion Using stopping and range of ions in matter (SRIM) calculations [38], the energy losses (both electronic and nuclear) by neon ions in the Pt film as a function of ion energy is shown in Figure 1. Unlike swift, heavy ions (with an energy of approximately hundreds of MeV) that undergo
PDF
Album
Supp Info
Full Research Paper
Published 24 Oct 2014

A study on the consequence of swift heavy ion irradiation of Zn–silica nanocomposite thin films: electronic sputtering

  • Compesh Pannu,
  • Udai B. Singh,
  • Dinesh. C. Agarwal,
  • Saif A. Khan,
  • Sunil Ojha,
  • Ramesh Chandra,
  • Hiro Amekura,
  • Debdulal Kabiraj and
  • Devesh. K. Avasthi

Beilstein J. Nanotechnol. 2014, 5, 1691–1698, doi:10.3762/bjnano.5.179

Graphical Abstract
  • . Large sputtering yield of Zn and its dependence on the size of nanoparticles The large magnitude of sputtering yield can be explained on the basis of the inelastic thermal spike model. According to this model, a large amount of incident energy of swift heavy ions is transferred to the electrons of the
PDF
Album
Full Research Paper
Published 01 Oct 2014

Microstructural and plasmonic modifications in Ag–TiO2 and Au–TiO2 nanocomposites through ion beam irradiation

  • Venkata Sai Kiran Chakravadhanula,
  • Yogendra Kumar Mishra,
  • Venkata Girish Kotnur,
  • Devesh Kumar Avasthi,
  • Thomas Strunskus,
  • Vladimir Zaporotchenko,
  • Dietmar Fink,
  • Lorenz Kienle and
  • Franz Faupel

Beilstein J. Nanotechnol. 2014, 5, 1419–1431, doi:10.3762/bjnano.5.154

Graphical Abstract
  • swift heavy ions. Au–TiO2 and Ag–TiO2 nanocomposite thin films with varying metal volume fractions were deposited by co-sputtering and were subsequently irradiated by 100 MeV Ag8+ ions at various ion fluences. The morphology of these nanocomposite thin films before and after ion beam irradiation has
  • ion beam induced growth of nanoparticles and structural modifications in the titania matrix. Keywords: noble metal–titania nanocomposite; surface plasmon resonance; swift heavy ions; Introduction Metal nanoparticles embedded in dielectric matrices in the form of nanocomposites have gained
  • very difficult to further modify the plasmonic response of these already synthesized nanocomposites. An additional fabrication experiment with slightly modified parameters might help. In this regards, the use of swift heavy ions (SHI) in order to modify the properties of the prepared nanocomposites in
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2014

Routes to rupture and folding of graphene on rough 6H-SiC(0001) and their identification

  • M. Temmen,
  • O. Ochedowski,
  • B. Kleine Bussmann,
  • M. Schleberger,
  • M. Reichling and
  • T. R. J. Bollmann

Beilstein J. Nanotechnol. 2013, 4, 625–631, doi:10.3762/bjnano.4.69

Graphical Abstract
  • ], which then can be modified in situ to create (twisted) FLG. In comparison to the well known epitaxial growth of graphene on SiC [12][13][14], here we study mechanically exfoliated graphene on 6H-SiC(0001) to produce large sheets of high quality. Defects are first created by swift heavy ions (SHI). The
PDF
Album
Full Research Paper
Published 07 Oct 2013

Diamond nanophotonics

  • Katja Beha,
  • Helmut Fedder,
  • Marco Wolfer,
  • Merle C. Becker,
  • Petr Siyushev,
  • Mohammad Jamali,
  • Anton Batalov,
  • Christopher Hinz,
  • Jakob Hees,
  • Lutz Kirste,
  • Harald Obloh,
  • Etienne Gheeraert,
  • Boris Naydenov,
  • Ingmar Jakobi,
  • Florian Dolde,
  • Sébastien Pezzagna,
  • Daniel Twittchen,
  • Matthew Markham,
  • Daniel Dregely,
  • Harald Giessen,
  • Jan Meijer,
  • Fedor Jelezko,
  • Christoph E. Nebel,
  • Rudolf Bratschitsch,
  • Alfred Leitenstorfer and
  • Jörg Wrachtrup

Beilstein J. Nanotechnol. 2012, 3, 895–908, doi:10.3762/bjnano.3.100

Graphical Abstract
  • micrometers), which contain channels a few nanometers wide. Such channels can be created by bombardment with high-energy heavy ions [4]. These mica masks provide the required thickness to stop those ions that do not enter the apertures, and at the same time provide the required high aspect ratio of the
PDF
Album
Video
Full Research Paper
Published 21 Dec 2012
Graphical Abstract
  • the past two decades, etched ion-track membranes have been widely used as templates for the creation of nanowires and nanotubes. Their fabrication involves two separate processing steps: (i) Irradiation of the template material with energetic heavy ions and creation of latent tracks; (ii) selective
  • accelerator of GSI provides heavy ions (up to uranium) of specific energy up to 11.4 MeV per nucleon (MeV/u) corresponding to ≈15% of the velocity of light [27]. Ion beams of such high energy have a penetration range in polymers of about 120 µm. Given this large range, foil stacks (e.g., ten foils 12 µm thick
PDF
Album
Review
Published 17 Dec 2012

Nanolesions induced by heavy ions in human tissues: Experimental and theoretical studies

  • Marcus Bleicher,
  • Lucas Burigo,
  • Marco Durante,
  • Maren Herrlitz,
  • Michael Krämer,
  • Igor Mishustin,
  • Iris Müller,
  • Francesco Natale,
  • Igor Pshenichnov,
  • Stefan Schramm,
  • Gisela Taucher-Scholz and
  • Cathrin Wälzlein

Beilstein J. Nanotechnol. 2012, 3, 556–563, doi:10.3762/bjnano.3.64

Graphical Abstract
  • , Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany 10.3762/bjnano.3.64 Abstract The biological effects of energetic heavy ions are attracting increasing interest for their applications in cancer therapy and protection against space radiation. The cascade of events leading to cell death or late
  • effects starts from stochastic energy deposition on the nanometer scale and the corresponding lesions in biological molecules, primarily DNA. We have developed experimental techniques to visualize DNA nanolesions induced by heavy ions. Nanolesions appear in cells as “streaks” which can be visualized by
  • . Keywords: DNA repair; heavy ions; microdosimetry; Monte Carlo simulations; nanolesions; radiation-induced nanostructures; Introduction In a low-dose field of γ-rays, such as that normally experienced on Earth due to background radiation, each human cell is traversed by very few electrons, which hence
PDF
Album
Supp Info
Full Research Paper
Published 25 Jul 2012

Radiation-induced nanostructures: Formation processes and applications

  • Michael Huth

Beilstein J. Nanotechnol. 2012, 3, 533–534, doi:10.3762/bjnano.3.61

Graphical Abstract
  • in this Thematic Series. In a somewhat analogous fashion, swift heavy ions can be used as nanopore-forming, seeding probes. When passing through thin polymer foils they leave behind a damage track, which can be further processed to form nanopores or nanochannels to be applied in biochemical analytics
  • passing through body tissues. On the other hand, this same observation has led to the rise of charged-particle cancer therapy over the past 20 years. Conceptually speaking, electrons that locally drive molecular dissociations, as well as swift heavy ions that locally cause damage in polymers or living
PDF
Editorial
Published 25 Jul 2012
Other Beilstein-Institut Open Science Activities